微积分(Calculus)是研究函数的微分、积分以及有关概念和应用的数学分支。微积分是建立在实数、函数和极限的基础上的,主要内容包括极限、连续、可微和重积分,最重要的思想就是“微元”和“无限逼近”。微积分是微分学和积分学的总称,微分学就是‘无线细分’,积分学就是‘无限求和’,无限就是极限,微积分的基础就是极限的思想。

微积分(Calculus)是高等数学中研究函数的微分(Differentiation)、积分(Integration)以及有关概念和应用的数学分支。它是数学的一个基础学科。内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。

微积分的产生:

到了十七世纪,有许多科学问题需要解决,这些问题也就成了促使微积分产生的因素。归结起来,大约有四种主要类型的问题:

第一类是研究运动的时候直接出现的,也就是求即时速度的问题。

第二类问题是求曲线的切线的问题。

第三类问题是求函数的最大值和最小值问题。

第四类问题是求曲线长、曲线围成的面积、曲面围成的体积、物体的重心、一个体积相当大的物体作用于另一物体上的引力。

十七世纪的许多著名的数学家、天文学家、物理学家都为解决上述几类问题作了大量的研究工作,如法国的费马、笛卡尔、罗伯瓦、笛沙格;英国的巴罗、瓦里士;德国的开普勒;意大利的卡瓦列利等人都提出许多很有建树的理论。为微积分的创立做出了贡献。

十七世纪下半叶,在前人工作的基础上,英国大科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作,虽然这只是十分初步的工作。他们的最大功绩是把两个貌似毫不相关的问题联系在一起,一个是切线问题(微分学的中心问题),一个是求积问题(积分学的中心问题)。  

牛顿和莱布尼茨建立微积分的出发点是直观的无穷小量,因此这门学科早期也称为无穷小分析,这正是现在数学中分析学这一大分支名称的来源。牛顿研究微积分着重于从运动学来考虑,莱布尼茨却是侧重于几何学来考虑的。

微积分学的创立,极大地推动了数学的发展,过去很多初等数学束手无策的问题,运用微积分,往往迎刃而解,显示出微积分学的非凡威力。

应该指出,这是和历史上任何一项重大理论的完成都要经历一段时间一样,牛顿和莱布尼茨的工作也都是很不完善的。他们在无穷和无穷小量这个问题上,其说不一,十分含糊。牛顿的无穷小量,有时候是零,有时候不是零而是有限的小量;莱布尼茨的也不能自圆其说。这些基础方面的缺陷,最终导致了第二次数学危机的产生。

直到19世纪初,法国科学学院的科学家以柯西为首,对微积分的理论进行了认真研究,建立了极限理论,后来又经过德国数学家维尔斯特拉斯进一步的严格化,使极限理论成为了微积分的坚定基础。才使微积分进一步的发展开来。任何新兴的、具有无量前途的科学成就都吸引着广大的科学工作者。在微积分的历史上也闪烁着这样的一些明星:瑞士的雅科布·贝努利和他的兄弟约翰·贝努利、欧拉、法国的拉格朗日、柯西……欧氏几何也好,上古和中世纪的代数学也好,都是一种常量数学,微积分才是真正的变量数学,是数学中的大革命。微积分是高等数学的主要分支,不只是局限在解决力学中的变速问题,它驰骋在近代和现代科学技术园地里,建立了数不清的丰功伟绩。

一些数学家,包括科林·麦克劳林,试图利用无穷小来进行证明,但直到150多年之后才得以成功。在奥古斯丁·路易·柯西和卡尔·魏尔斯特拉斯的努力之下,终于实现对无穷小的符号的回避。微分和积分的基础终于被打下了。在柯西的著作中,我们看到了大量的基础论证,包括通过连续来对无穷小进行定义,和用以定义微分的一个不太精确的(ε,δ)-极限定义版本。魏尔斯特拉斯推导总结了极限概念,回避了无穷小。继魏尔斯特拉斯之后,微积分就常以极限作为基础,而非无穷小了。波恩哈德·黎曼使用这些概念来对积分进行严格定义。在这一时期,微积分这一概念被综合成为欧几里得空间和复平面。 

极限不是对微积分基础的唯一推导,如使用亚伯拉罕·罗宾逊的非标准分析进行推导。罗宾逊在1960年左右所做的推导袭承了牛顿——莱布尼茨的最初概念,应用数理逻辑的方式将实数系统扩大到了无穷小和无限数量。所得出的结果为超实数,可以套用莱布尼茨式的微积分法则。

早期的微积分概念来自于埃及、希腊、中国、印度、伊拉克、波斯、日本,但现代微积分来自于欧洲。17世纪时,艾萨克·牛顿与戈特弗里德·莱布尼茨在前人的基础上推导出微积分的基本理论。微积分基本概念的产生是建立在求瞬间运动和曲线下面积这两个问题之上的。

微分应用包括极端速度、加速度、曲线斜率、最优化等。积分应用包括面积、体积、弧长、质心、做功、压力。更高级的应用包括幂级数和傅里叶级数等。

微积分为更加精确地理解空间、时间和运动的本质提供了便利。几个世纪以来,数学家和哲学家都为除以零或无限这一悖论而大为苦恼。这些问题在研究运动和面积时常常出现。古希腊哲学家埃利亚的芝诺为该悖论举出了几个著名的例子。微积分,特别是极限和无穷级数,为解决该悖论提供了工具。

微积分中最重要的概念是“极限”。微商(即导数)是一种极限。定积分也是一种极限。

恩格斯说:“在一切理论成就中,未必再有什么像17世纪下半叶微积分的发现那样被看作人类精神的最高胜利了。如果在某个地方我们看到人类精神的纯粹的和惟一的功绩,那就正是在这里。”有了微积分,人类才有能力把握运动和过程。有了微积分,就有了工业革命,有了大工业生产,也就有了现代化的社会。航天飞机。宇宙飞船等现代化交通工具都是微积分的直接后果。在微积分的帮助下,万有引力定律发现了,牛顿用同一个公式来描述太阳对行星的作用,以及地球对它附近物体的作用。从最小的尘埃到最遥远的天体的运动行为。宇宙中没有哪一个角落不在这些定律的所包含范围内。这是人类认识史上的一次空前的飞跃,不仅具有伟大的科学意义,而且具有深远的社会影响。它强有力地证明了宇宙的数学设计,摧毁了笼罩在天体上的神秘主义、迷信和神学。一场空前巨大的、席卷近代世界的科xy动开始了。毫无疑问,微积分的发现是世界近代科学的开端。

导数

在运动学中,平均速度等于通过的距离除以所花费的时间——在一小段间隔的时间内,除上其走过的一小段距离,等于这一小段时间内的速度,但是当这一小段间隔的时间趋于零,也就是瞬时速度时,则无法按照通常的除法计算,这时的速度为时间的导数,得用求导的方法计算。也就是说,一个函数的自变量趋近某一极限时,其因变量的增量与自变量的增量之商的极限即为导数。在速度问题上,距离是时间的因变量,随时间变化而变化;当时间趋于某一极限时,距离增量除以时间增量的极限即为距离对时间的导数。

导数的几何意义是该函数曲线在这一点上的切线斜率。

微分学主要研究的是在函数自变量变化时如何确定函数值的瞬时变化率(导数或微商)。换言之,计算导数的方法就叫微分学。微分学的另一个计算方法是牛顿法,该算法又叫应用几何法,主要通过函数曲线的切线来寻找点斜率。费马常被称作“微分学的鼻祖”。

微分学研究的是一个函数的导数的定义,性质和应用。求导的过程被称为微分。给定一个函数和定义域内的一个点,在那个点的导数描述了该函数在那一点附近的表现。通过找出一个函数定义域内每一点的导数,可以生成一个新的函数,叫做原函数的导函数,或者导数。在数学术语中,导数是输入一个函数,输出另一个函数的线性算子。这比初等代数里的过程更抽象一些,初等代数里的函数常常是输入一个数,并输出另一个数。

积分

积分学是微分学的逆运算,即从导数推算出原函数,又分为定积分与不定积分。一个一元函数的定积分可以定义为无穷多小矩形的面积和,约等于函数曲线下包含的实际面积。因此,我们可以用积分来计算平面上一条曲线所包含的面积、球体或圆锥体的表面积或体积等。从技术上来讲,积分学是研究线性算子之间的关系。

不定积分是导数的逆运算,即反导数。

微积分基本公式(Fundamental Theorem of Calculus)又称微积分基本定理、牛顿-莱布尼茨公式,证实微分和积分互为逆运算。更精确地说,它将一个反导数的具体值与定积分联系起来。因为计算反导数通常比应用定积分定义更加简单,微积分基本公式为计算定积分提供了一个行之有效的方式。它也可以被理解为微分是积分逆运算的精确解释。

微积分应用

微积分学的发展与应用几乎影响了现代生活的所有领域。它与大部分科学分支关系密切,包括精算、计算机、统计、工程、商业、医药、人口统计,特别是物理学;经济学亦经常会用到微积分学。几乎所有现代技术,如建筑、航空等都以微积分学作为基本数学工具。微积分使得数学可以在变量和常量之间互相转化,让我们可以已知一种方式时推导出来另一种方式。

物理学大量应用微积分;所有经典力学和电磁学都与微积分有密切联系。已知密度的物体质量,动摩擦力,保守力场的总能量都可用微积分来计算.例如,将微积分应用到牛顿第二定律中:史料一般将导数称为“变化率”。物体动量的变化率等于向物体以同一方向所施的力。今天常用的表达方式是,它包换了微分,因为加速度是速度的导数,或是位置矢量的二阶导数。已知物体的加速度,我们就可以得出它的路径。

麦克斯韦尔的电磁学和爱因斯坦的广义相对论都应用了微分。化学使用微积分来计算反应速率,放射性衰退。生物学用微积分来计算种群动态,输入繁殖和死亡率来模拟种群改变。

微积分可以与其他数学分支交叉混合。例如,混合线性代数来求得值域中一组数列的“最佳”线性近似。它也可以用在概率论中来确定由假设密度方程产生的连续随机变量的概率。在解析几何对方程图像的研究中,微积分可以求得最大值、最小值、斜率、凹度、拐点等。

格林公式连接了一个封闭曲线上的线积分与一个边界为且平面区域为的双重积分。它被设计为求积仪工具,用以量度不规则的平面面积。例如,它可以在设计时计算不规则的花瓣床、游泳池的面积。

在医疗领域,微积分可以计算血管最优支角,将血流最大化。通过药物在体内的衰退数据,微积分可以推导出服用量。在核医学中,它可以为治疗肿瘤建立放射输送模型。 在经济学中,微积分可以通过计算边际成本和边际利润来确定最大收益。

微积分也被用于寻找方程的近似值;实践中,它用于解微分方程,计算相关的应用题,如牛顿法、定点循环、线性近似等。比如,宇宙飞船利用欧拉方法来求得零重力环境下的近似曲线。

曲线的切线

要确定曲线的切线,关键是要求出它的斜率k=tana,其中a是切线的倾角;

tana=lim(Δy/Δx)(Δx→0)

 k=lim(f(x)-f(x0))/(x-x0)(x→x0)

直线的点斜式方程:y-f(x0)=k(x-x0)

导数f'(x0)表示曲线C:y=f(x)在点P0(x0,f(x0))的切线的斜率;

f'(x)=lim(f(x)-Δx)/Δx(Δx→0)

f'(x0)=f'(x)|x=x0


微积分基本定理:变上限积分定理(积分上限的函数)

微积分基本公式:利用微积分基本定理,可以通过原函数计算定积分;